Liceo Scientifico G. Marconi - Classe 5S VERIFICA SCRITTA DI FISICA - 12.12.2012

COMPITO A

Esercizio A.1 Una carica positiva Q è posta nel vuoto in un punto A. Una distribuzione lineare omogenea di carica con $\lambda = 2Q/(9d)$ è disposta il modo tale che la distanza tra A e il filo di carica vale d.

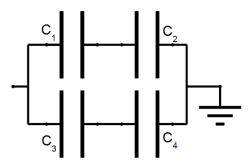
Indica con B il piede della perpendicolare condotta da A al filo di carica e determina la distanza tra A e il punto del segmento AB in cui il campo elettrico totale è nullo.

[3d/4]

Esercizio A.2 Un conduttore sferico isolato è immerso in acqua distillata ($\varepsilon_r = 80$). Quando lo si porta a un potenziale di 150 V (rispetto all'usuale livello di riferimento), esso assorbe una carica di 4.7×10^{-7} C.

Calcola la capacità del conduttore, il suo raggio, la densità di carica elettrica presente su di esso e il modulo del campo elettrico sulla sua superficie.

$$[3,1 \text{ nF}, 35 \text{ cm}, 3, 1 \times 10^{-7} \text{ C/m}^2, 4, 4 \times 10^2 \text{ V/m}]$$


Esercizio A.3 Un condensatore piano ha le armature di area 75,1 cm² separate da un foglio di polietilene ($\varepsilon_r = 2,25$) dello spessore di 0,325 mm. A esso è applicata una differenza di potenziale di 800 V.

Determina la carica positiva presente sulle armature del condensatore e la densità volumica di energia elettrica che si trova all'interno di esso. [368 pC; 60,3 J/m^3]

Esercizio A.4 A che distanza da una carica puntiforme $Q = 5,88 \times 10^{-6}$ C, sempre posta all'interno del polietilene, la densità volumica di energia elettrica è un decimo di quella trovata nell'esercizio precedente?

Esercizio A.5 La rete della figura è costituita da condensatori che hanno capacità $C_1 = 600$ nF, $C_2 = 900$ nF, $C_3 = 450$ nF e $C_4 = 675$ nF. Essa è sottoposta a una differenza di potenziale $\Delta V = 40.0$ V.

Risolvi la rete di condensatori e determina l'energia immagazzinata nel condensatore di capacità C_3 .

 $[24,0~\mathrm{V},~16,0~\mathrm{V},~24,0~\mathrm{V},~16,0~\mathrm{V},~14,4~\mu\mathrm{C},~14,4~\mu\mathrm{C},~10,8~\mu\mathrm{C},~10,8~\mu\mathrm{C},~130~\mu\mathrm{J}]$

Esercizio A.6 La rigidità dielettrica del polietilene è pari a 18.9 MV/m. Qual è la massima differenza di potenziale teorica a cui può essere sottoposto il condensatore dell'esercizio 3? [6,14 × 10³ V]

Buon Lavoro!

$$e = 1,602 \times 10^{-19} \text{ C}; \ \varepsilon_0 = 8,854 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2); \ m_e = 9,109 \times 10^{-31} \text{ kg}; \ c = 2,998 \times 10^8 \text{ m/s}; \ N_A = 6,022 \times 10^{23} \text{ mol}^{-1}; \ \mu_0 = 4\pi \times 10^{-7} \text{N/A}^2.$$

Liceo Scientifico G. Marconi - Classe 5S VERIFICA SCRITTA DI FISICA - 12.12.2012

COMPITO B

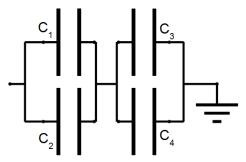
Esercizio B.1 Una carica positiva Q è posta nel vuoto in un punto M. Una distribuzione lineare omogenea di carica con $\lambda = -3Q/l$ è disposta il modo tale che la distanza tra M e il filo di carica vale l.

Indica con N il piede della perpendicolare condotta da M al filo di carica e determina la distanza tra M e il punto della retta MN (esterno a MN dalla parte di M) in cui il campo elettrico totale è nullo. [l/2]

Esercizio B.2 Un conduttore sferico isolato di raggio 45 cm è immerso in alcol metilico ($\varepsilon_r = 34$) ed è portato a un potenziale di 200 V (rispetto all'usuale livello di riferimento).

Calcola la capacità del conduttore, la sua carica, la densità di carica elettrica persente su di esso e il modulo del campo elettrico sulla sua superficie.

$$[1.7 \text{ nF}, 3.4 \times 10^{-7} \text{ C}, 1.3 \times 10^{-7} \text{ C/m}^2, 4.3 \times 10^2 \text{ V/m}]$$


Esercizio B.3 Un condensatore piano ha le armature separate da un foglio di polistirene ($\varepsilon_r = 2,58$) dello spessore di 0,385 mm. Sottoposto a una differenza di potenziale di 600 V, il condensatore assorbe una carica positiva pari a 293 nC.

Determina l'area delle armature del condensatore e la densità volumica di energia elettrica che si trova all'interno di esso. [82,3 cm 2 ; 27,7 J/m 3]

Esercizio B.4 A che distanza da una carica puntiforme $Q = 7.11 \times 10^{-6}$ C, sempre posta all'interno del polistirene, la densità volumica di energia elettrica è la metà di quella trovata nell'esercizio precedente? [15,0 cm]

Esercizio B.5 La rete della figura è costituita da condensatori che hanno capacità $C_1 = 250$ nF, $C_2 = 350$ nF, $C_3 = 400$ nF e $C_4 = 500$ nF. Essa è sottoposta a una differenza di potenziale $\Delta V = 30.0$ V.

Risolvi la rete di condensatori e determina l'energia immagazzinata nel condensatore di capacità C_2 .

 $[18.0~\mathrm{V},~18.0~\mathrm{V},~12.0~\mathrm{V},~12.0~\mathrm{V},~4.50~\mu\mathrm{C},~6.30~\mu\mathrm{C},~4.80~\mu\mathrm{C},~6.00~\mu\mathrm{C},~56.7~\mu\mathrm{J}]$

Esercizio B.6 il condensatore dell'esercizio **3** può essere sottoposto a una differenza di potenziale teorica massima di 7,58 kV. Quanto vale la rigidità dielettrica del polistirene? [19,7 MV/m]

Buon Lavoro!

$$e = 1,602 \times 10^{-19} \text{ C}; \ \varepsilon_0 = 8,854 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2); \ m_e = 9,109 \times 10^{-31} \text{ kg}; \ c = 2,998 \times 10^8 \text{ m/s}; \ N_A = 6,022 \times 10^{23} \text{ mol}^{-1}; \ \mu_0 = 4\pi \times 10^{-7} \text{N/A}^2.$$