LICEO SCIENTIFICO "MARCONI" - CLASSE 2R

Verifica scritta di Laboratorio di Fisica e Chimica – 16 aprile 2007

, <u>,</u>	a che ha una massa di 0,25 kg e una ossiede un'energia cinetica pari a:	> 5,0 cm.	≥ 2,5 cm.
> 4,0 J. > 8,0 J.	> 1,0 J. > 2,0 J.	del livello di zero, in	che si trova a 3,944 m al di sopra una zona in cui l'accelerazione di (s², possiede un'energia potenziale
Test A2) – Una molla di costante elastica $k = 400 \text{ N/m}$,		gravitazionale pari a 54,79 J. La massa della pietra vale:	
allungata rispetto alla posizione di riposo, possiede		> 1,418 kg.	> 1,416 kg.
un'energia potenzial molla vale:	e pari a 0,50 J. L'allungamento della	> 1,400 kg.	> 1,410 kg.
> 25 cm.	➤ 12 cm.		

Quesito A1) – Spiega qual è il comportamento microscopico della natura che percepiamo come «temperatura di un corpo».

Quesito A2) – Aiutandoti anche con una figura, spiega sotto quali condizioni può avvenire una reazione *endoterma*.

Esercizio A1) – Un blocchetto di potassio (che ha un calore specifico pari a 754 J/(kg °C)), passa dalla temperatura di 19,2 °C a quella di 48,0 °C quando riceve 14,1 kJ di calore. • Calcola la massa del blocchetto di potassio.
 Esercizio A2) – Il calore latente di fusione del rame è 205 kJ/kg. Data una matassa di rame con una massa pari a 4,00 kg, calcola: la quantità di energia ΔE che serve per fondere completamente la matassa, se essa si trova già alla temperatura di
 fusione; la velocità che dovrebbe avere la stessa matassa per possedere un'energia cinetica pari a ΔE; da che altezza dovrebbe cadere la stessa matassa per acquistare tale velocità (ponendo g = 9,80 m/s² e trascurando l'attrito con l'atmosfera).
Esercizio A3) – Calcola l'entalpia standard della seguente reazione: $2N_2O_5\left(s\right) \to 4NO_2\left(g\right) + O_2\left(g\right)$.
Buon lavoro!

LICEO SCIENTIFICO "MARCONI" – CLASSE 2R

Verifica scritta di Laboratorio di Fisica e Chimica – 16 aprile 2007

Fila B Allievo:	
Test B1) – Una palla che ha una massa di 0,40 kg e una velocità di 5,0 m/s possiede un'energia cinetica pari a:	> $1.0 \times 10^3 \text{ N/m}$. > $2.0 \times 10^2 \text{ N/m}$.
 5,0 J. 2,0 J. 10 J. 1,0 J. Test B2) – Una molla allungata di 10 cm possiede un'energia potenziale pari a 1,0 J. La costante elastica	Test B3) – Una pietra di massa pari a 3,649 kg, che si trova a 2,311 m al di sopra del livello di zero, possiede un'energia potenziale gravitazionale pari a 82,60 J. Nella zona in cui si trova la pietra, l'accelerazione di gravità vale:
della molla vale:	 9,800 N/kg. 9,700 N/kg. 9,796 N/kg. 9,796 N/kg.

Quesito B1) – Illustra l'esperimento di Joule e spiega qual è la sua importanza.

Quesito B2) – Aiutandoti anche con una figura, spiega sotto quali condizioni una reazione *esoterma* non avviene in modo completo.

Esercizio B1) – Un blocchetto di zinco della massa di 25,0 kg passa dalla temperatura di 12,4 °C a quella di 66,8 °C quando riceve 525 kJ di calore. • Calcola il calore specifico dello zinco.
Esercizio B2) – Il calore latente di fusione del nichel è 310 kJ/kg. Dato un lingotto di nichel con una massa pari a 10.0 kg, calcola: • la quantità di energia ΔE che serve per fondere completamente il lingotto, se esso si trova già alla temperatura di fusione; • la velocità che dovrebbe avere lo stesso lingotto per possedere un'energia cinetica pari a ΔE ; • da che altezza dovrebbe cadere lo stesso lingotto per acquistare tale velocità (ponendo $g=9.80~\text{m/s}^2$ e trascurando l'attrito con l'atmosfera).
Esercizio B3) – Calcola l'entalpia standard della seguente reazione: 2NO (g) + O ₂ (g) \rightarrow 2NO ₂ (g) .
Buon lavoro!